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We report the generalized Wheland polynomial for acyclic graphs depicting polyenes 
having n = 10 carbon atoms. We consider the problem of deriving generalized Wheland 
polynomials for larger chains by recursion. The recursion Wh(n+ 1;x)=Wh(n;x)+ 
(1 - x)Wh(n - 1; x) allows one to find the next larger generalized Wheland polynomial for a 
chain having an even number of vertices by knowing generalized Wheland polynomials of 
chains having fewer vertices. The recursion, however, does not allow one to predict the general- 
ized Wheland polynomial for a chain having an odd number of vertices from smaller chains! 
Here we report a procedure which allows one to derive the generalized Wheland polynomial for 
a chain having an odd number of vertices. This is achieved by combining the coefficients for 
rings having the same number of vertices. The generalized Wheland polynomials for odd rings 
are simply related to the generalized Wheland polynomials for smaller chains and can be 
derived from the information on smaller chains. This makes it possible to extend the recursion 
for generalized Wheland polynomials for arbitrarily large n. 

1 .  I n t r o d u c t i o n  

Conjuga ted  systems, such as naphthalene illustrated in fig. 1, give rise to numer-  
ous valence structures. Besides the Kekule  valence structures which depict  cou- 
pling of  pi-electrons at adjacent  sites one can construct  valence structures in which 
pi-electrons of  nonadjacent  carbon centers are coupled. The so-derived valence 
structures cor respond to so-called "exci ted"  valence structure or valence structures 
having " long  bonds"  (see fig. 1). The task of  enumerat ion of  structures of  different 
degrees o f "exc i t a t i on" ,  that  is, having different numbers  o f " l o n g  bonds" ,  is com- 
binatorial ly difficult. In 1935 Wheland  [1 ] in t roduced a powerful  technique for enu- 
mera t ion  of  Kekule  valence structures of  "different  degrees of  excitat ion".  It  
expresses the result in a form of  a counting polynomial ,  that  is, a polynomial  whose  
coefficient for  x n represents the number  of  valence structures with n " long"  
bonds.  I f  we recall that  it was two years before  Polya [2] published his f a m o u s  
count ing theorem, the pioneering work  of  Wheland  appeared  as one of  the first pro-  
found  results in the emerging mathemat ical  discipline of  graph theory  [3]. The 
count ing polynomial  of  Wheland  satisfies the recursive relation [1] 
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KEKULE VALENCE STRUCTURES 

EXCITED VALENCE STRUCTURES: 1 LONG BOND 

• 0 b 

EXCITED V~LENCE STRUCTURES: 2 LONG BONDS 

NONCANONICAL VALENCE STRUCTURES : 

Fig. 1. Canonical valence structures of naphthalene of different degrees of excitation and selected 
noncanonical valence structures. 

Wh(G;x) = W h ( G - E ; x )  + ( 1 - x ) W h ( G - E E ; x ) ,  

where G, G -  E, and G -  E E  represent, respectively, a given graph, the graph 
with a single edge deleted, and the graph with all the adjacent edges to the edge E 
deleted. The enumeration that Wheland considered was carried out only over the 
canonical valence bond structures. In honoring George Wheland, we refer to this 
polynomial as the Wheland polynomial, Wh(x) [4,5]. While the Wheland polyno- 
mial appears to be an interesting structural function, it ought to be emphasized that 
it is not a structural invariant. The coefficients of the various powers ofx in the poly- 
nomial depend on the selection of valence structures as the canonical, which 
depends on the selection of the labels for the vertices. Explicit forms of Wheland 
polynomials for chains are given in the book Chemical Graph Theory [6], while 
illustrations of polynomials can be found in refs. [7-10]. 
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Is there a similar, mathematically related, counting polynomial which would 
represent a structural invariant, i.e. independent of the assumed labeling of ver- 
tices? In search for such an invariant, Randi6 and collaborators [4,5] considered all 
valence structures in their count, rather than restricting the count to the canonical 
"excited" structures. The new polynomial GW(G; x) is called the generalized Whe- 
land polynomial, but the symbol GW could equally stand for George Wheland! In 
previous work GW polynomials were reported for chains and cycles up to n -- 18, 
the results obtained by brute force of a computer. The program was outlined in refs. 
[4]. In a later publication [5] GW(G; x) were reported for many smaller graphs hav- 
ing less than n = 8 vertices. A relationship was found between the coefficients of 
GW and the nonadjacent numbers p(G, k), which Hosoya [7] introduced in his 
study of the topological index for chemical structures. The p(G, k) numbers satisfy 
a recursive relation [8], which thus allows one to derive the GW polynomials for 
longer chains recursively. 

In this paper we report GW polynomials for trees having n = 9 and n = 10 ver- 
tices, including results for larger disconnected trees. We see however that the recur- 
sion of GW(G; x) for linear chains L,, having n vertices, 

V q ' h ( L n + l ;  x )  = Wh(Ln; x) + (1 - x)Wh(Ln_l;X), 

holds only ifn + 1 is even! By using the above recursion, and by knowing GW poly- 
nomials for smaller chains, one can derive GW polynomials for the next largest 
even chain. But one cannot continue to find GW of the next odd chain since the 
recursion is not valid for odd chains. This appears somewhat peculiar and unsatis- 
factory. We could, as already mentioned, derive GW of a higher odd chain using 
properties ofp(G, k) and continue the next recursive step. Is it possible to resolve 
the peculiarity of GW polynomials for odd chains? We will outline an approach to 
recursion for GW of chains that does not involve p(G, k) numbers. Instead it 
related the coefficients of GW polynomials for odd chains to those for odd rings. 
The GW for odd rings, however, can be derived from GW polynomials of smaller 
chains. The significance of this is that now one can derive GW for an arbitrary 

Tab le  1 
The  genera l ized W h e l a n d  po lynomia l s  for  acyclic s t ruc tures  hav ing  n = 10 vert ices a n d  perfect  
m a t c h i n g  ( t ha t  is, h a v i n g  a Kekule  valence s tructure) .  The  g raphs  are given in fig. 2. 

1 1 + 10x + 55x 2 + 185x 3 + 365x a + 329x 5 
2 1 + 9x + 50x 2 + 191x s + 372x 4 + 322x 5 
3 1 + 8x + 54x 2 + 185x s + 376x 4 + 321x s 
4 1 + 8x + 48x 2 + 188x 3 + 388x 4 + 312x s 
5 1 + 7x + 55x 2 + 188x s + 371x a + 323x 5 
6 1 + 6x + 59x 2 + 182x 3 + 375x 4 + 322x -s 
7 1 + 6x + 53x 2 + 185x 3 + 387x 4 + 313x s 
8 1 + 6x + 50x 2 + 194x 3 + 378x 4 + 316x -s 
9 1 + 5x + 54x 2 + 188x 3 + 382x 4 + 315x s 

10 1 + 5x + 51x 2 + 197x 3 + 373x 4 + 318x s 
11 1 + 4x + 49x 2 + 194x 3 + 389x 4 + 308x s 
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graph and later use the relationship between GW andp(G,  k) to determine the lat- 
ter. The nonadjacent  numbers p(G, k) in general are not  easy to derive, except in 
special cases, such as linear chains. 

2. Genera l ized  po lynomia l s  for g raphs  with N = 10 vertices 

In table 1 we have listed the generalized Wheland polynomials for the 11 graphs 
with ten vertices which correspond to all possible polyenes, i.e., trees having a 
(single) Kekule structure shown in fig. 2. The coefficient of  the kth powers of  the 
polynomials shows the number  of valence structures with k " long" bonds (that is, k 

2 

4 

Fig. 2. Skeletons ofpolyenes having n = 10 carbon atoms and a Kekule structure. 
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is t h e  " d e g r e e  o f  e x c i t a t i o n "  o f  W h e l a n d ) .  T h e  l a s t  c o e f f i c i e n t  ( o f  t h e  h i g h e s t  

p o w e r )  q u a l i t a t i v e l y  s h o w s  t h e  " d e g r e e  o f  b r a n c h i n g "  o f  t h e  m o l e c u l a r  s k e l e t o n ,  

t h e  m o r e  " b r a n c h e d "  t h e  s k e l e t o n  t h e  s m a l l e r  t h e  c o e f f i c i e n t .  

I n  t a b l e  2 w e  h a v e  l i s t e d  t h e  g e n e r a l i z e d  W h e l a n d  p o l y n o m i a l s  f o r  a c y c l i c  sys -  

t e m s  h a v i n g  n = 10 v e r t i c e s  b u t  w i t h  n o  K e k u l e  s t r u c t u r e .  H e n c e  t h e r e  is  n o  c o n -  

s t a n t  t e r m  in  t h e  G W  p o l y n o m i a l  in  t h e s e  cases .  T h e  s t r u c t u r e s  1 2 - 3 8  c o r r e s p o n d  t o  

b i r a d i c a l s  w i t h  t w o  u n p a i r e d  p i - e l e c t r o n s  a n d  t o  p o l y r a d i c a l s  ( t w o  s t r u c t u r e s )  

w i t h  f o u r  u n p a i r e d  e l e c t r o n s .  O n e  c a n  d e t e c t  s o m e  r e g u l a r i t y  b e t w e e n  t h e  l e a d i n g  

c o e f f i c i e n t  ( t h e  h i g h e s t  p o w e r  o f  x )  a n d  t h e  d e g r e e  o f  b r a n c h i n g .  T h e  s t r u c t u r e s  8 

a n d  9 (f ig .  3) r e p r e s e n t  a p a i r  o f  i s o s p e c t r a l  g r a p h s  ( t h a t  S c h w e n k  h a s  d e s c r i b e d  

[1 1]), a n d  t h e r e f o r e  w e  e x p e c t  t h e i r  g e n e r a l i z e d  W h e l a n d  p o l y n o m i a l s  t o  b e  t h e  

s a m e .  

3. Disconnected graphs 

T h e  g e n e r a l i z e d  W h e l a n d  p o l y n o m i a l  f o r  d i s c o n n e c t e d  g r a p h s  c a n n o t  s i m p l y  b e  

d e r i v e d  f r o m  t h e  k n o w l e d g e  o f  t h e  p o l y n o m i a s  f o r  i t s  p a r t s  a s  w a s  t h e  c a s e  f o r  W h e -  

Table 2 
The generalized Wheland polynomials for acyclic structures having n = 10 vertices and no Kekule 
valence structure. The graphs are given in fig. 3. 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

9x + 54x 2 + 189x 3 + 369x 4 + 324,r s 
1 lx  + 49x 2 + 192x 3 + 370x 4 + 323x 5 
12x + 48x 2 + 189x 3 + 375x 4 + 321x 5 
7 x +  50x 2 + 198x 3 + 371x 4 + 319x s 
4x + 59x 2 + 189x 3 + 374x ~ + 319x 5 
9x + 45x 2 + 201x 3 + 372x 4 + 318x 5 
6x + 54x 2 + 192x 3 + 375x A + 318x 5 
8x + 49x 2 + 195x 3 + 376x 4 + 317x 5 
8x + 49x 2 + 195x 3 + 376x 4 + 317x s 
5 x +  58x 2 + 186x 3 + 379x 4 + 317x s 
7 x +  53x 2 + 189x 3 + 380x 4 + 316x 5 
9 x +  548x 2 + 192x 3 + 381x 4 + 315x s 
1 Ix + 43x 2 + 195x 3 + 382x 4 + 314.r s 
4x + 50x 2 + 201x 3 + 377x 4 + 313x 5 
6x + 45x 2 + 204x 3 + 378x 4 + 312x 5 
63x 2 + 186x 3 + 384x 4 + 312x 5 
5x + 49x 2 + 198x 3 + 382x 4 + 311x s 
4x + 53x 2 + 192x 3 + 386x 4 + 310x 5 
6x + 48x 2 + 195x 3 + 387x 4 + 309x 5 
8x + 43x 2 + 198x 3 + 388x 4 + 308x 5 
7x + 47x 2 + 192x 3 + 392x 4 + 307x 5 
4x + 56x 2 + 183x 3 + 395x 4 + 307x 5 
4x + 44x 2 + 204x 3 + 389x 4 + 304x 5 
60x 2 + 180x 3 + 405x 4 + 300x 5 
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4A A.  

Fig. 3. (Continues.) 

land polynomials. In ref. [4] this was illustrated for the naphthalene graph showing 
cases in which the recursion for GW(x) was valid or not valid. The recursion holds 
for GW(x) only if the recursion produces graphs with a single component, that is, 
graphs G-E and G-EE, are connected, as has been observed in refs. [4]. This dearly 
suggests that disconnected components cannot be considered independently. That 
is, the GW of a graph having two components is not simply given as the product of 
GW's of the two component, as has been the case with Wh(x). 
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23 ~ 24 

14 

16  

Fig. 3. Acyclic graphs having n = 10 vertices and no Kekule structure. 

In  fig. 4 we illustrate the correspondence between valence structures of  a chain 
of  six vertices 0aexatriene), the valence structures of  a disconnected chain on six ver- 
tices (bond 2-3 is missing), and the valence structure of  a chain with five vertices 
but  having six pi-electrons (a radical). The first column gives all the 15 valence 
structures of  different degrees of  excitation possible for hexatriene in the central 
column we show the corresponding structures for the case in which the bond  2-3 
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Fig. 4. (continues). 

was erased, i.e., for the disconnected chain composed of  ethylene and butadiene. 
The last column illustrates a reduction of  a coupling of  a pair of  pi-electrons in a 
six-vertex chain to a single uncoupled electron in a five-vertex chain. 

The count of valence structures in the disconnected graph is simply related to 
the count of the valence structures of  the hexatriene: All structures in which the 
erased bond 2-3 was a single CC bond make the same contr ibution to the general- 
ized Wheland polynomial  as before. All structures in which the erased bond 2-3 was 
a double CC bond formally have increased the degree of  excitation. A net effect of  
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Fig. 4. All 15 possible valence structures of hexatriene, the corresponding valence structures for a 
graph obtained by erasure of bond 2-3, and the corresponding valence structures for a graph obtained 
by erasure of a terminal vertex, converting the corresponding valence structures involving an 

uncoupled pi-electron to radical valence structures. 

this is that  the number  of  valence structures of  lower excitation decreases some- 
what  while the number  of  valence structures of  the higher excitation increases. 
Thus f rom fig. 4 we see that  for hexatriene two of  the single excited structures are 
t rans formed into doubly excited structures, making a change of  - 2 x  + 2x 2 to the 
polynomial ,  while one of  the doubly excited valence structure becomes a triply 
excited structure causing a change in the polynomial  - x  2 + x a, making the overall 
change o f - 2 x  + x 2 + x a. Thus instead of  

1 + 3x + 6x "2 + 5x 3 
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Table 3 
The generalized Wheland polynomials for linear chains having disconnected components. 

n Deleted Generalized Wheland polynomial coefficients 

Const. x x 2 x 3 x 4 x 5 x 6 x 7 

4 1-2 0 2 1 
2-3 1 0 2 

10 

12 

14 

1-2 0 3 6 6 
2-3 1 1 7 6 
3-4 0 4 4 7 

1-2 0 4 18 42 41 
2-3 1 3 18 41 42 
3-4 0 6 15 42 43 
4-5 1 2 21 38 43 

1-2 0 5 40 165 370 365 
2-3 1 6 41 161 366 370 
3-4 0 8 40 162 364 371 
4-5 1 4 46 158 365 371 
5-6 0 9 36 168 360 372 

1-2 0 6 75 480 1830 4020 3984 
2-3 1 10 85 485 1850 3989 4020 
3-4 0 10 85 490 1805 3980 4025 
4-5 1 7 88 488 1808 3977 4026 
5-6 0 12 78 498 1803 3978 4026 

1-2 0 7 126 1155 6580 23940 51828 51499 
2-3 1 15 162 1240 6630 23724 51535 51828 
3-4 0 12 156 1245 6660 23730 51468 51864 
4-5 1 11 156 1240 6665 23739 51454 51869 
5-6 0 15 150 1245 6660 23745 51450 51870 
6-7 1 9 165 1225 6675 23739 51451 51870 
7-8 0 16 144 1260 6640 23760 51444 51871 

for GW(G; x) ofhexatriene we obtain 

1 + x + 7 x 2  + 6 x  3 

for GW(G; x) of the disconnected chain having n = 6 vertices and bond 2-3 
missing. 

The knowledge of GW for a chain having disconnected parts is of considerable 
interest when applied to the recursion relation for GW. Acyclic structures and acyc- 
lic fragments of cyclic structures always lead to disconnected fragments unless 
terminal vertices are employed. In table 3 we have therefore listed GW(G; x) for dis- 
connected even linear chains having n --- 14 or fewer vertices. 
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4. L i n e a r  cha ins  hav ing  an  o d d  n u m b e r  o f  vert ices  

Structures having an odd number  of  vertices necessarily have K = 0, i.e., have 
no (unexcited) Kekule  structure. Their GW(G; x) will have no constant  term. The 
coefficient of  x in GW(G;  x) now counts the number  of  Kekule  valence structures 
for the radical. This is illustrated in fig. 5 for a few structures having n = 9 vertices. 
Table 4 lists the GW(G;  x) for 18 acyclic structures with n = 9 (illustrated in 
fig. 6). See that  the sum of  the coefficients in structures having an odd number  of  
vertices, 2k - 1, is the same as for structures having 2k vertices. While this suggests 

K ,  = t, 

K' 

K '  = 3 

I ( '  = 5 

Fig. 5. Selected graphs having n = 9 vertices for which erasure of a single vertex gives rise to different 
values for K' (the coefficient of the linear term in GW(G; x)). 
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Table  4 

T he  general ized W h e l a n d  po lynomia l s  for  acyclic s t ruc tures  hav ing  n = 9 vertices. The  g r a phs  are gi- 

ven  in fig. 6. 

1 5x + 40x a + 165x 3 + 370x 4 + 365x 5 

2 Zr  + 40x 2 + 168x 3 + 376x 4 + 359x 5 

3 4x + 35x 2 + 171x 3 + 377x 4 + 358x 5 

4 3 x +  39x 2 + 165x 3 + 381x 4 + 357x s 

5 5x + 34x 2 + 168x 3 + 382x 4 + 356x 5 

6 4x  + 38x 2 + 162x 3 + 386x 4 + 355x 5 

7 2x + 31x a + 180x 3 + 379x 4 + 353x 5 

8 3x + 30x 2 + 172x 3 + 384x 4 + 351x s 

9 39x a + 168x 3 + 387x 4 + 351x 5 

10 2x + 34x a + 171x 3 + 388x 4 + 350x 5 

11 2 x +  34x a + 171x 3 + 388x 4 + 350x 5 

12 2x + 37x 2 + 162x 3 + 397x 4 + 347x s 

13 3x + 32x 2 + 165x 3 + 398x A + 346x 5 

14 30x 2 + 180x 3 + 390x 4 + 345x s 

15 36x a + 162x 3 + 4 0 8 x  4 + 399x 5 

that the two are related, it also suggests that one should not expect the recursion 
to yield the GW polynomials for the case 2k + 1, which will have 2k + 1 times more 
terms. The total number of valence structures, i.e., the sequence: 1, 3, 15, 105, 
945, 10395,.. .  represents "odd" factorials (2k- 1)!! [5]. 

The observation that graphs on 2k and 2k - 1 vertices have the same number of 
valence structures suggests that we try to derive the count of valence structures of 
different excitation for the case of graphs having an odd number 2k - 1 of vertices 
by considering the valence structures of graph having 2k vertices. This is illustrated 
in the last column of fig. 4 where a single terminal vertex of hexatriene is dropped. 
The dropped vertex results in a presence of an uncoupled pi-electron. In such trees 
the coefficient in GW(G; x) of the linear term, again, as the constant term in graphs 
with an even number of vertices, counts the number of Kekule structures of the cor- 
responding radical (as previously illustrated in fig. 5 by few examples for the case 
n = 9). This coefficient can be derived independently by a graphical procedure 
(outlined elsewhere [12]), which is particularly of interest in polycyclic systems 
which may have many such radical Kekule structures. 

5. Recurs ion  

In table 5 we have collected the coefficients of GW for even and odd linear 
chains separately. Knowing the limitations of the recursive formula, which does 
not allow one from knowing the coefficients for chains having 2k vertices to find 
the coefficients for a chain having 2k + 1 vertices, the question is then that of trying 
to find recursion for either only even or only odd linear chains. The problem, how- 
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ii ~ 12 

17 ~ 18 

Fig. 6. Molecular diagrams for polyene radicals having n = 9 vertices. 

ever, appears unsurmountable because the size of the coefficients dramatically 
increases when going from graphs having 2k vertices to graphs having 2k + 1 ver- 
tices. The increment is given by the factor (2k + 1) itself, as shown earlier. As is not 
uncommon in mathematics, the difficulty of some problems may increase when 
one restricts the scope of the problem. The solution to our problem becomes simple 
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Table 5 
The generalized Wheland  polynomials  for chains having even and odd numbers  of  atoms,  and rings 
having an odd number  o f  atoms.  

Even chains: 
n = 2  1 
n = 4  l + x + x  2 
n = 6  1 + 3 x +  6x2 + 5x 3 
n = 8 1 + 6 x + 2 1 x  2 + 4 1 x  3 + 36x 4 

n = 10 1 + 1 0 x +  55x a + 185x 3 + 365x 4 + 329x 5 

Odd chains: 
n = 3  2 x + x  a 
n = 5 2 x +  6x a + 6x 3 
n = 7 4 x +  18x a + 42x 3 + 4Ix  4 
n = 9 5x + 40x a + 165x 3 + 370x 4 + 365x 5 

Odd rings: 

n = 3  3x 
n = 5 5x(1 + x + x  2) 
n = 7 7x(1 + 3x + 6x a + 5x 3) 
n = 9 9x(1 + 6 x + 2 1 x  2 + 4 1 x  3 + 36x 4) 

when we extend the consideration to ring structures. Ring structures should have 
been expected to be "simpler" compared to chains in view of the "equivalence" of 
all vertices in the construction of Rumer diagrams [13] for these. The Rumer dia- 
grams illustrate the pairing of pi-electrons for the canonical valence structures 
only, that is, they are subject to the "noncrossing" rule for the couplings. The 
equivalence of vertices, of course, breaks down in chains. While a regularity in the 
coefficients of even rings is not apparent, the coefficients of GW(G; x) for odd 
rings show a rather simple structure. When the common factor 2k + 1 is factored 
out the reduced coefficients are those of linear chains of size 2k. Thus from the 
information on a smaller chain we can derive GW(x) for a larger ring. However, 
from a ring we can always get GW(G; x) for the chain of the same size! Hence by 
combining the above two steps we can extend the recursion for GW(G; x) to chains 
of ever increasing size. In table 6 we illustrate for a chain of length n = 9, how one 
can derive GW knowing GW for a ring having nine vertices and shorter chains. 

6. Conc lud ing  remarks  

Generalizing the recursion for GW(G; x) is a useful novel result. Construction 
of GW(G; x) for larger graphs previously was limited by the computational com- 
plexity of the brute force calculations. With the outlined construction we extended 
the size of graphs for which GW can be constructed. Moreover one can use the con- 
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Table 6 
Construct ion of the generalized Wheland polynomial  for a chain of length n = 9 using the informa- 
t ion on GW(x)  for a ring with nine atoms and smaller chains. 

Ring(9) = Chain(9) + (1 - x) Chain(7) 
Hence 

Chain(9) = Ring(9) -  (1 - x) Chain (7) 
= 9x Chain(8)- (1  - x) Chain(7) 

Thus: 
9x(1 + 6 x +  21x 2 + 4 1 x  3 + 36x 4) 

+ ( x -  1)( 4 x +  18x 2 + 4 2 x  3 + 4 1 x  4) 

Chain(9): 5x + 40x 2 + 165x 3 + 370x 4 + 365x 5 

structed GW(G; x) to derive p(G, k) numbers for larger graphs using the relation- 
ship between the two [5]. Direct use of computers to obtain GW for large graphs is 
practically limited already for graphs of size less than n = 20. For example, graphs 
having n = 16 vertices require over 3.5 hours of CPS on a VAX 11/780 computer 
to obtain generalized Wheland polynomials. Graphs having n = 18 vertices 
increase the computation time to over 90 hours! A hope that one will be able to com- 
pute GW(G; x) for larger graphs by a computer therefore appears unpromising. 

Admittedly, GW(G; x) have also a rather limited direct application, but their 
relationship to p(G, k) opens up novel use. The p(G, k) are the coefficients of the 
acyclic or matching polynomial [14]. They are of interest in structure-property cor- 
relations in chemistry [15]. Their evaluation in a general case is rather tedious, par- 
ticularly for large systems, unless there is some symmetry. For translational 
symmetry in linearly fused benzenes the technique of the transfer matrix [16] can be 
successively applied [ 17], while for an arbitrarily linearly fused benzene ring system 
one has to use several such matrices [18]. The present approach, which allows an 
extension of the use of the recursion, makes it possible to use the relationship 
between GW(x) andp(G, k) to derive the latter in a relatively straightforward way. 

The presentation also illustrate the benefits, not unknown in mathematical stu- 
dies, where a problem is simplified by considering a more general case. By consider- 
ing ring and chain structures jointly, rather than separately, we were able to 
derive useful recursion. If one would have focused attention to the ring structures 
alone again one would not have been able to successfully derive the recursion and 
extend the results for smaller rings to construction of the generalized Wheland 
polynomials for large rings. 
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